GRAPH THEORY

Tutorial - 11

1. Given an optimal coloring of a \boldsymbol{k} chromatic graph, prove that for each color i there is a vertex with color i that is adjacent to vertices of the other k-1 colors.
2. Prove that if \mathbf{G} is a color-critical graph, then the graph G^{\prime} generated from it by applying Mycielski's construction is also color-critical.
3. Let \mathbf{G} and H be k-critical graphs sharing only vertex v, with $v u \in E(G)$ and $v w \in E(H)$. Prove that, the graph (G-vu) $U(H-v w) U u w$ is k-critical.
4. Prove that, $X\left(C_{n} ; k\right)=(k-1)^{n}+(-1)^{n}(k-1)$.
5. Let G be a maximal planar simple graph. Prove that, \mathbf{G}^{*} is 2-edge connected and 3-regular.
